skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Teall, Grace"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climatology archive and accurate weather forecasts depend strongly on availability of observed properties of the atmosphere and can benefit significantly from higher temporal resolution of measurements on atmospheric temperature, pressure, relative humidity, wind speed and direction. Weather ballooning with radiosonde payloads can provide these data with relatively low initial capital costs while providing educational benefits for students, especially undergraduates in STEM majors. For example, recently we conducted a field campaign, Atmospheric Dynamics over the Gulf Stream (ADOGS), by launching radiosondes hourly during January 6 – 9, 2025 from New Haven, Connecticut. We observed rapid changes in the troposphere during that week and provided a great weather ballooning educational platform for students from Northeastern US, especially those at Primarily Undergraduate Institutions (PUIs) and Emerging Research Institutions (ERIs). Our results provide practical field experiences that may benefit the planning of future radiosonde campaigns, especially those with ballooning education and student engagement focuses, by the high-altitude ballooning (HAB) community. 
    more » « less
    Free, publicly-accessible full text available September 14, 2026
  2. Weather ballooning with radiosonde payloads can provide field-based, observational meteorological data for operational weather forecasts and research on the atmosphere and the climate. Despite the relatively low initial capital costs when comparing to aircraft/satellite methods, the costs of ground stations/trackers (GSTs) receiving and decoding the radiosonde telemetry may pose a significant financial challenge to institutions with limited resources and to flight missions with high temporal resolution (launch intervals of less than 3 hours). We conducted a Radiosonde and Ground Station/Tracker Intercomparison (RGSTI) study in April 2025 to evaluate some of the current low-cost GSTs options and the Sondehub (SH) multi-receiver radiosonde tracking network. Although yielding varied data based on radiosonde models, SH demonstrated less dependence on antenna alignment, longer radiosonde tracking and data telemetry, and the capacity of tracking multiple radiosondes with minimal hardware requirements and financial barriers. Our results provide a comprehensive review on the data matrix of different radiosonde/GST combinations and recommendations that may benefit the planning of future high temporal resolution radiosonde campaigns by the high altitude ballooning community. 
    more » « less
    Free, publicly-accessible full text available September 14, 2026
  3. The concentration of the stratospheric ozone layer is of great interest to the atmospheric science community, since it is critical in blocking the harmful UV radiation from the sun. Typically, regular weather balloons with Electrochemical Cell (ECC) ozonesondes are used to determine the vertical profile of ozone column concentration within a flight time of ~2 hours, with a limited fraction of the data relevant to the ozone layer. Therefore, it would be ideal if ozonesonde flights can be maintained within the ozone layer (~60,000 to 80,000 ft) to maximize the efficiency in data acquisition, especially considering the rising costs of ozonesonding and high-altitude ballooning. We adapted the vented balloon with altitude-control flight capability from the Nationwide Eclipse Ballooning Program (NEBP) for atmospheric ozonesonding and deployed a commercial ECC ozonesonde payload with this approach from Central Texas during the 2024 total solar eclipse in the hope of (1) field testing the performance and application potential of vented balloons in horizontal ozone layer profiling and (2) monitoring the stratospheric ozone layer during the solar eclipse for an extended period of time. The adapted vent valve successfully lowered the balloon from 71,000 ft to 41,000 ft within minutes and demonstrated promising performance in the field. Unfortunately, unexpected radio communication difficulties were experienced from six hours before the totality to two hours after, leaving the second research objective largely unobtainable. 
    more » « less